ANTIHYPERTENSIVE AGENTS AND VASODILATORS

Lecture 5
Hypertension

- Blood pressure
 - \(BP = CO \times PVR \)
 - Interaction between autonomic nervous system, cardiovascular system and renal system
 - Normal: \(\leq 110/70 \)
 - Prehypertension: \(<130/90 \)
 - Hypertension: \(\geq 130/90 \)
 - Taken in 3 different office visits
Hypertension

- Etiology of HPN
 - Primary or essential = no specific cause
 - Genetic risk
 - Secondary
 - Hyperthyroidism
 - Pheochromocytoma
 - Renal disease
 - Diabetes
 - Obesity and dyslipidemia
Hypertension

- Hypertensive urgency
 - BP $\geq 180/110$

- Hypertensive emergency
 - Hypertensive urgency with end organ damage
 - Ex. Hypertensive encephalopathy, angina, stroke, etc.

- Goal
 - Decrease blood pressure to 130-140/90
 - Do not decrease more than 20% of MAP every hour
 - Proper brain perfusion
Hypertension

- Treatment
 - Pharmacologic
 - Dependent on level of BP, presence of end-organ damage and presence of co-morbidities
 - Single/Mono-therapy vs combination therapy
 - Non-pharmacologic
 - Diet and exercise
 - Salt restriction
 - Control co-morbidities (ex. DM)
 - Avoid other substances which may increase BP
 - Ex. cold remedies, caffeine, smoking, alcohol, contraceptives
 - Patient education
Introduction to antihypertensive agents

- 4 general mechanisms:
 1. Decrease blood volume
 - Decrease sodium = Diuretics
 2. Sympathoplegic agents (sympatholytic)
 - By vasodilation, cardiac function, venous pooling
 - 4 groups
 3. Decrease PVR
 - Direct vasodilators
 - 4 groups
 4. Inhibit RAAS
 - Block production or action of angiotensin → PVR by vasodilation and decrease aldosterone effect
Diuretics

- Review of the renal system and urine formation
- RAAS system
 - RAAS system through the juxtaglomerular apparatus
 - Renin: increases aldosterone secretion via production of angiotensin.
 - Angiotensin: increases aldosterone, anti-diuretic hormone, blood pressure and thirst.
 - Aldosterone: increases active reabsorption of Na+ and secretion of K+ by the distal tubules
Diuretics

- Increase urine volume = depletes blood volume
- Basic MOA
 - Inhibits NaCl transporter = down reabsorption in the renal tubules = down water reabsorption
 - Ex. furosemide (loop of Henle), hydrochlorthiazide (DCT)
 - Aldosterone antagonism
 - Inhibits Na reabsorption from the DCT and collecting tubule
 - Ex. spironolactone
 - Osmotic diuretic
 - Increase osmolarity of urine = down water reabsorption
 - Ex. mannitol = only thru IV infusion
- Effect
 - Can decrease BP by 10-15mmHg
Diuretics

- Side effects
 - Hyponatremia
 - Hypokalemia
 - Except for spironolactone (potassium sparing diuretic)
 - Increases uric acid reabsorption
 - May precipitate gout
 - May increase blood lipid levels
Sympathoplegic agents

- Drugs that act on the CNS
- Drugs that act on autonomic ganglia
- Drugs that reduce release of norepinephrine
- Drugs that block postsynaptic adrenoreceptors
Centrally acting sympathoplegics

- **Basic MOA:** reduce sympathetic outflow from the brainstem → vasodilation

- **Methyldopa**
 - Converted to α-methyldopamine and α-methylnorepinephrine
 - Replaces norepinephrine in the vesicles of the axon
 - A false sympathetic transmitter
 - Stimulates central alpha receptors = vasodilation
 - Safe for pregnant patients

- **Side effect**
 - Sedation and lactation
Centrally acting sympathoplegics

- **Clonidine**
 - Stimulates central alpha receptors and arterial alpha receptors
 - Produces a brief rise in blood pressure followed by a more prolonged hypotension by inhibiting sympathetic stimulation from the medulla
 - Reduces heart rate and promotes vasodilation

- **Side effects**
 - Highly lipid soluble = easily enters the brain
 - Sedation and dry mouth (↓salivation)
Ganglion blocking agents

- Blocks ganglions of both sympathetic and parasympathetic nerves
 - Too many side effects
 - Not used anymore
Inhibit Norepinephrine release

- **MOA:** Inhibit release of NE from the axon
- **Guanethidin**
 - Significant anti-sympathetic effect
 - Inhibits release of NE as well as replaces NE in the vesicles = depleting NE stores
 - Polar chemical = does not enter the CNS
- **Side effects**
 - Hypotension, diarrhea, impaired ejaculation or retrograde ejaculation
Inhibit Norepinephrine release

- **Reserpine**
 - Decreases norepinephrine production by inhibiting VMAT (vesicular membrane associated transporter)
 - Decreases sympathetic activity

- **Side effects**
 - Affects brain and peripheral nerves
 - Sedation, lassitude, nightmares and mental depression
Adrenoceptor Antagonists

- Alpha and beta blockers
- α1 blockers (-zosin)
 - Prazosin, terazosin, doxazosin
 - Dilates arterioles and venules
 - Concomitant salt and water retention
 - Also useful for men with urinary bladder obstruction such as BPH
 - Relaxes prostate muscle
- Side effect
 - 1st dose phenomenon = sudden drop in BP after the 1st dose
 - 1st dose should be a small dose, succeeding doses may be increased.
<table>
<thead>
<tr>
<th>Type</th>
<th>Tissue location</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>Most vascular smooth muscle</td>
<td>Contraction</td>
</tr>
<tr>
<td></td>
<td>Pupillary dilator muscle</td>
<td>Contraction (dilates pupil)</td>
</tr>
<tr>
<td></td>
<td>Pilomotor smooth muscle</td>
<td>Erects hair</td>
</tr>
<tr>
<td></td>
<td>Prostate</td>
<td>Contraction</td>
</tr>
<tr>
<td></td>
<td>Heart</td>
<td>↑ inotropy</td>
</tr>
<tr>
<td>α2</td>
<td>Post synaptic CNS neurons</td>
<td>Probably multiple (↓ BP)</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td>Aggregation</td>
</tr>
<tr>
<td></td>
<td>Adrenergic and cholinergic nerve terminals</td>
<td>Inhibits transmitter release</td>
</tr>
<tr>
<td></td>
<td>Some vascular smooth muscle</td>
<td>Contraction</td>
</tr>
<tr>
<td></td>
<td>Fat cells</td>
<td>Inhibits lipolysis</td>
</tr>
</tbody>
</table>
Adrenoceptor Antagonists = Opposite effect

<table>
<thead>
<tr>
<th>Type</th>
<th>Tissue location</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>β1</td>
<td>Heart, juxtaglomerular cells</td>
<td>↑chronotropy and inotropy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑renin release</td>
</tr>
<tr>
<td>β2</td>
<td>Respiratory, uterine and vascular smooth muscle</td>
<td>Smooth muscle relaxation</td>
</tr>
<tr>
<td></td>
<td>Skeletal muscle</td>
<td>↑Potassium uptake</td>
</tr>
<tr>
<td></td>
<td>Human liver</td>
<td>Activates glycogenolysis</td>
</tr>
<tr>
<td>β3</td>
<td>Fat cells</td>
<td>lipolysis</td>
</tr>
<tr>
<td>D1</td>
<td>Smooth muscle</td>
<td>Dilates renal blood vessels</td>
</tr>
<tr>
<td>D2</td>
<td>Nerve endings</td>
<td>Modulates transmitter release</td>
</tr>
</tbody>
</table>
Adrenoceptor Antagonists

- β blockers
- Propanolol
 - Non-selective beta blocker
 - Decreases HR
 - Inhibits stimulation renin production
 - Decreased sympathetic activity
 - → decreased BP
- Side effect
 - Bradycardia
 - Asthma (promote bronchoconstriction)
 - Diabetes (inc. blood glucose)
Adrenoceptor Antagonists

- **β blockers**

- **Metoprolol and atenolol**
 - Selective β1 antagonist = ↓HR
 - Extensively metabolized by liver enzymes (Cyt P450)
 - Better for asthmatic and diabetic patients

- **Other beta1 blockers**
 - Nadolol, carteolol, pindolol, acebutolol, labetalol, carvedilol, esmolol.
Direct Vasodilators

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release of nitric oxide from endothelium</td>
<td>Nitroprusside, hryalazine, nitrates</td>
</tr>
<tr>
<td>Reduction of calcium influx</td>
<td>Calcium channel blockers</td>
</tr>
<tr>
<td>Hyperpolarization of smooth muscle membrane through opening of potassium channels</td>
<td>Minoxidil, diazoxide</td>
</tr>
<tr>
<td>Activation of dopamine receptors</td>
<td>Fenoldopam</td>
</tr>
</tbody>
</table>
Vascular smooth muscle cell

Ca^{2+} channel blockers

Ca^{2+}

Calmodulin

Ca^{2+} - Calmodulin complex

MLCK

Myosin-LC kinase (MLCK)

Myosin-LC

Myosin-LC-PO_{4}

Actin

Contraction

Relaxation

ATP

cAMP

MLCK(PO_{4})_{2}

cGMP

β_{2} agonists
1. **Stimulus**: This is the initial trigger that causes the depolarization phase.

2. **Depolarization**: The membrane potential decreases from rest potential towards +30 mV due to the opening of sodium channels.

3. **Repolarization**: The membrane potential returns to the resting state due to the opening of potassium channels and sodium pumps.

4. **Hyperpolarization**: The membrane potential further decreases beyond the resting state.

5. **Rest potential**: The membrane potential stabilizes at a negative value, typically around -90 mV.

6. **Active sodium and potassium pumps**: These pumps restore the sodium and potassium gradients across the membrane.
Direct Vasodilators

<table>
<thead>
<tr>
<th>Arteriodilators</th>
<th>Venodilators</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydralazine</td>
<td></td>
<td>Nitrates</td>
</tr>
<tr>
<td>Minoxidil</td>
<td></td>
<td>Na nitroprusside</td>
</tr>
<tr>
<td>Diazoxide</td>
<td></td>
<td>ACEI and ARB</td>
</tr>
<tr>
<td>Fenoldopam</td>
<td></td>
<td>Centrally acting</td>
</tr>
<tr>
<td>CCB’s</td>
<td></td>
<td>alpha1 blockers</td>
</tr>
</tbody>
</table>

Direct Vasodilators

- **Sodium nitroprusside**
 - **MOA:** release of NO to endothelium
 - By activation of guanylyl cyclase → vessel relaxation
 - Only parenterally administered (no oral preparation)
 - Used for hypertensive emergencies
 - Rapidly lowers blood pressure within minutes
 - Effects disappear rapidly as well.
 - **Side effects**
 - Metabolized to cyanide, which is then metabolized to thiocyanate (less toxic form)
 - Cyanide poisoning (metabolic acidosis, arrhythmias, hypotension)
 - Take hydroxycobalamin (Vit B12) to combine with cyanide to create an inert compound (cyanocobalamin)
Direct Vasodilators

- **Hydralazine**
 - Arteriodilator
 - **MOA:** release of nitric oxide
 - For initial therapy of severe hypertension
- **Side effects**
 - Tachyphylaxis = cannot be used over long periods
 - Headache, nausea, anorexia
 - Lupus like syndrome = arthralgia, myalgia, skin rash, fever
 - Disappears after discontinuation of drug
Direct Vasodilators

- Nitrates or nitrites
 - Nitroglycerin, isosorbide dinitrate, isosorbide mononitrate, nitric oxide
 - Vasodilator (both arteries and veins)
 - Relaxes all smooth muscles (no effect on cardiac or skeletal muscles)
 - MOA: releases nitric oxide in endothelium which relaxes blood vessels
 - Rapidly metabolized by the liver into inactive substances
 - Preferred route is sublingual, which bypasses the liver
 - Except isosorbide mononitrate (good for oral route)
Direct Vasodilators

- Nitrates or nitrites
 - Effect
 - Rapid onset of action and short duration
 - Decreases preload (venodilation)
 - Not good for normal hearts
 - Good for heart failure and heart overload
 - Dilates coronary blood vessels = increase flow
 - Slight decrease in platelet aggregation
 - Decreases afterload (arteriodilation)
Direct Vasodilators

- Nitrates or nitrites
 - Side effects
 - Tolerance = cannot be used over several days
 - Reflex sympathetic response
 - Headache = dilation of cerebral arteries = throbbing or pulsating headache
Direct Vasodilators

- Calcium Channel Blockers (CCB)
 - 2 groups
 - Dihydropyridines
 - -dipine
 - Non-dihydropyridines
 - Verapamil
 - Diltiazem
 - MOA: inhibits calcium influx into vascular smooth muscles, thus decreasing muscle contractility of the blood vessels
 - Vasodilator: Arteries > veins
Direct Vasodilators

- Calcium Channel Blockers (CCB)
 - Dihydropyridines
 - Amlodipine, nifedipine, nicardipine, felodipine
 - Blocks calcium channels in blood vessels = vasodilation
 - Side effects
 - Headache
 - Reflex tachycardia
Direct Vasodilators

- Calcium Channel Blockers (CCB)
 - Non-dihydropyridines
 - Verapamil
 - Modest vasodilation
 - Blocks cardiac contractility and significant SA and AV node conduction
 - Decreases HR = \downarrow workload of heart
 - Diltiazem
 - Modest vasodilation
 - Blocks cardiac contractility and moderate SA and AV node conduction
 - Decreases HR = \downarrow workload of heart
Direct Vasodilators

- **Minoxidil**
 - **MOA:** hyperpolarization of smooth muscle (K channels)
 - **Arteriodilator**
 - **Side effect**
 - Hypertrichosis = used as a topical agent
Direct Vasodilators

- Diazoxide
 - MOA: hyperpolarization of resting membrane potential by opening K channels
 - Arteriodilator
- Side effect
 - Excessive hypotension
 - Inhibits insulin release
Direct Vasodilators

- Fenoldopam
 - MOA: dopamine1 (D1) receptor agonist
 - Arteriodylilorator
 - Side effect
 - Increases intraocular pressure (not good for glaucoma patients)
Angiotensin blockers

- Review of the renal system and urine formation
- RAAS system
 - RAAS system through the juxtaglomerular apparatus
 - Aldosterone: increases active reabsorption of Na+ and secretion of K+ by the distal tubules
 - Renin: increases aldosterone secretion via production of angiotensin.
 - Angiotensin: increases aldosterone, anti-diuretic hormone, blood pressure and thirst.
 - Angiotensin II = vasoconstrictor
Angiotensin blockers

- RAAS system
 - Renin is released from the kidneys (JG-App)
 - Renin acts upon angiotensinogen to form Angiotensin I
 - Angiotensin I is converted to Angiotensin II by ACE (Angiotensin converting enzyme) in the lungs
 - Angiotensin II is converted to Antiogensin III in the adrenal gland
 - Angiotensin II and III stimulate aldosterone release → sodium and water reabsorption
Angiotensin blockers

- ACE inhibitors
 - -pril
- ARB’s (Antiogensin receptor blockers)
 - -sartan
- Aldosterone antagonists (diuretic)
- Renin antagonist
 - aliskiren
Angiotensin blockers

- **ACE inhibitors**
 - Captopril, enalapril, perindopril, quinapril, etc.
 - Inhibits conversion of angiotensin I to angiotensin II
 - Prevents vasoconstriction and aldosterone secretion
 - Prevents inactivation of bradykinin
 - Stimulates release of NO → vasodilation
 - No reflex sympathetic activation → good for patients with heart failure
 - Diminishes proteinuria and stabilizes renal function
 - Especially good for patients with kidney problems or diabetes
Angiotensin blockers

- ACE inhibitors
 - Side effects
 - Hyperkalemia (potassium sparing effect)
 - Possible drug interactions with diuretics
 - Dry cough (due to accumulation of bradykinin)
 - Angioedema
 - Contraindicated during pregnancy
Angiotensin blockers

- Angiotensin receptor blockers (ARB)
 - Losartan, valsartan, candesartan, telmisartan
 - Similar effect with ACE inhibitors
 - Except no accumulation of bradykinin = less cough side effect
 - Decreased proteinuria and improved renal function
 - No sympathetic reflex response to vasodilation
 - Contraindicated in pregnancy
Angina pectoris

- Chest pain from myocardial ischemia
 - Due to lack of blood flow to heart muscles
 - Blockage of coronary arteries (CAD or coronary artery disease)
 - 2 types
 - Stable angina
 - Classic angina (effort angina) = atheromatous obstruction of coronaries, manifesting during effort or exercise
 - Unstable angina
Angina pectoris

- **Unstable angina or acute coronary syndrome**
 - When episodes of angina occur at rest, or when there is an increase in severity, frequency and duration of chest pain in patients with previously stable stable angina
 - Progressive blockage of the coronaries due to platelet plug or other occlusive thrombi

- **Special type of angina**
 - Prinzmetal angina (vasospastic angina) = transient spasm of localized portions of the coronaries (also due to atheromatous obstruction)
 - May be stable or unstable
Angina pectoris

- **Coronary blood flow**
 - Due to perfusion pressure (aortic diastolic pressure) and duration of diastole
 - Blood flows to coronary arteries only during diastole
 - Inversely proportional to coronary vascular resistance
Angina pectoris

- Treatment
 - Decrease oxygen demand (decrease workload of heart)
 - Increase contractility
 - Decrease heart rate = beta blockers
 - Decrease blood pressure or peripheral vascular resistance
 - Increase delivery (increase coronary blood flow)
 - Dilate vessels and prolong diastolic time
 - Vasodilators and beta blockers
 - Remove blockage or atherosclerosis
 - Anti hyperlipidemics, anti-platelets
Angina pectoris

Treatment

- **Nitrates**

<table>
<thead>
<tr>
<th>Effect of Nitrates</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential benefits</td>
<td></td>
</tr>
<tr>
<td>↓ ventricular volume</td>
<td>↓ Myocardial O2 requirement</td>
</tr>
<tr>
<td>↓ arterial pressure</td>
<td></td>
</tr>
<tr>
<td>↓ ejection time</td>
<td></td>
</tr>
<tr>
<td>vasodilation of coronary arteries</td>
<td>Relief of coronary artery spasm</td>
</tr>
<tr>
<td>↑ collateral flow</td>
<td>↑ Perfusion to ischemic myocardium</td>
</tr>
<tr>
<td>↓ LV diastolic pressure</td>
<td>↑ Subendocardial perfusion</td>
</tr>
</tbody>
</table>
Angina pectoris

<table>
<thead>
<tr>
<th>Effect of Nitrates</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential deleterious effects</td>
<td></td>
</tr>
<tr>
<td>Reflex tachycardia</td>
<td>✆ Myocardial O2 demand</td>
</tr>
<tr>
<td>Reflex in contractility</td>
<td></td>
</tr>
<tr>
<td>➖ diastolic perfusion time due to tachycardia</td>
<td>➖ Coronary perfusion</td>
</tr>
</tbody>
</table>
Erectile dysfunction

- Due to atherosclerosis of vascular bed in penis
- Promote vasodilation to increase blood flow to penis and erectile tissue
- Deadly interaction with nitrates
 - Severe hypotension
 - 6 hour interval between nitrates and sildenafil